A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
energy-model-with-harvesting-example.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2014 Wireless Communications and Networking Group (WCNG),
3 * University of Rochester, Rochester, NY, USA.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Cristiano Tapparello <cristiano.tapparello@rochester.edu>
19 */
20
21/**
22 *
23 * This example extends the energy model example by connecting a basic energy
24 * harvester to the nodes.
25 *
26 * The example considers a simple communication link between a source and a
27 * destination node, where the source node sends a packet to the destination
28 * every 1 second. Each node is powered by a BasicEnergySource, which is recharged
29 * by a BasicEnergyHarvester, and the WiFi radio consumes energy for the transmission/
30 * reception of the packets.
31 *
32 * For the receiver node, the example prints the energy consumption of the WiFi radio,
33 * the power harvested by the energy harvester and the residual energy in the
34 * energy source.
35 *
36 * The nodes initial energy is set to 1.0 J, the transmission and reception entail a
37 * current consumption of 0.0174 A and 0.0197 A, respectively (default values in
38 * WifiRadioEnergyModel). The energy harvester provides an amount of power that varies
39 * according to a random variable uniformly distributed in [0 0.1] W, and is updated
40 * every 1 s. The energy source voltage is 3 V (default value in BasicEnergySource) and
41 * the residual energy level is updated every 1 second (default value).
42 *
43 * The simulation start at time 0 and it is hard stopped at time 10 seconds. Given the
44 * packet size and the distance between the nodes, each transmission lasts 0.0023s.
45 * As a result, the destination node receives 10 messages.
46 *
47 */
48
49#include "ns3/core-module.h"
50#include "ns3/energy-module.h"
51#include "ns3/internet-module.h"
52#include "ns3/mobility-module.h"
53#include "ns3/network-module.h"
54#include "ns3/wifi-radio-energy-model-helper.h"
55#include "ns3/yans-wifi-helper.h"
56
57#include <fstream>
58#include <iostream>
59#include <string>
60#include <vector>
61
62using namespace ns3;
63using namespace ns3::energy;
64
65NS_LOG_COMPONENT_DEFINE("EnergyWithHarvestingExample");
66
67/**
68 * Print a received packet
69 *
70 * \param from sender address
71 * \return a string with the details of the packet: dst {IP, port}, time.
72 */
73static inline std::string
75{
77
78 std::ostringstream oss;
79 oss << "--\nReceived one packet! Socket: " << iaddr.GetIpv4() << " port: " << iaddr.GetPort()
80 << " at time = " << Simulator::Now().GetSeconds() << "\n--";
81
82 return oss.str();
83}
84
85/**
86 * \param socket Pointer to socket.
87 *
88 * Packet receiving sink.
89 */
90void
92{
93 Ptr<Packet> packet;
94 Address from;
95 while ((packet = socket->RecvFrom(from)))
96 {
97 if (packet->GetSize() > 0)
98 {
100 }
101 }
102}
103
104/**
105 * \param socket Pointer to socket.
106 * \param pktSize Packet size.
107 * \param n Pointer to node.
108 * \param pktCount Number of packets to generate.
109 * \param pktInterval Packet sending interval.
110 *
111 * Traffic generator.
112 */
113static void
116 Ptr<Node> n,
117 uint32_t pktCount,
118 Time pktInterval)
119{
120 if (pktCount > 0)
121 {
122 socket->Send(Create<Packet>(pktSize));
123 Simulator::Schedule(pktInterval,
125 socket,
126 pktSize,
127 n,
128 pktCount - 1,
129 pktInterval);
130 }
131 else
132 {
133 socket->Close();
134 }
135}
136
137/**
138 * Trace function for remaining energy at node.
139 *
140 * \param oldValue Old value
141 * \param remainingEnergy New value
142 */
143void
144RemainingEnergy(double oldValue, double remainingEnergy)
145{
146 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
147 << "s Current remaining energy = " << remainingEnergy << "J");
148}
149
150/**
151 * Trace function for total energy consumption at node.
152 *
153 * \param oldValue Old value
154 * \param totalEnergy New value
155 */
156void
157TotalEnergy(double oldValue, double totalEnergy)
158{
159 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
160 << "s Total energy consumed by radio = " << totalEnergy << "J");
161}
162
163/**
164 * Trace function for the power harvested by the energy harvester.
165 *
166 * \param oldValue Old value
167 * \param harvestedPower New value
168 */
169void
170HarvestedPower(double oldValue, double harvestedPower)
171{
172 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
173 << "s Current harvested power = " << harvestedPower << " W");
174}
175
176/**
177 * Trace function for the total energy harvested by the node.
178 *
179 * \param oldValue Old value
180 * \param totalEnergyHarvested New value
181 */
182void
183TotalEnergyHarvested(double oldValue, double totalEnergyHarvested)
184{
185 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
186 << "s Total energy harvested by harvester = " << totalEnergyHarvested << " J");
187}
188
189int
190main(int argc, char* argv[])
191{
192 std::string phyMode("DsssRate1Mbps");
193 double Prss = -80; // dBm
194 uint32_t PacketSize = 200; // bytes
195 bool verbose = false;
196
197 // simulation parameters
198 uint32_t numPackets = 10000; // number of packets to send
199 double interval = 1; // seconds
200 double startTime = 0.0; // seconds
201 double distanceToRx = 100.0; // meters
202
203 // Energy Harvester variables
204 double harvestingUpdateInterval = 1; // seconds
205
206 CommandLine cmd(__FILE__);
207 cmd.AddValue("phyMode", "Wifi Phy mode", phyMode);
208 cmd.AddValue("Prss", "Intended primary RSS (dBm)", Prss);
209 cmd.AddValue("PacketSize", "size of application packet sent", PacketSize);
210 cmd.AddValue("numPackets", "Total number of packets to send", numPackets);
211 cmd.AddValue("startTime", "Simulation start time", startTime);
212 cmd.AddValue("distanceToRx", "X-Axis distance between nodes", distanceToRx);
213 cmd.AddValue("verbose", "Turn on all device log components", verbose);
214 cmd.Parse(argc, argv);
215
216 // Convert to time object
217 Time interPacketInterval = Seconds(interval);
218
219 // disable fragmentation for frames below 2200 bytes
220 Config::SetDefault("ns3::WifiRemoteStationManager::FragmentationThreshold",
221 StringValue("2200"));
222 // turn off RTS/CTS for frames below 2200 bytes
223 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("2200"));
224 // Fix non-unicast data rate to be the same as that of unicast
225 Config::SetDefault("ns3::WifiRemoteStationManager::NonUnicastMode", StringValue(phyMode));
226
228 c.Create(2); // create 2 nodes
229 NodeContainer networkNodes;
230 networkNodes.Add(c.Get(0));
231 networkNodes.Add(c.Get(1));
232
233 // The below set of helpers will help us to put together the wifi NICs we want
235 if (verbose)
236 {
238 }
239 wifi.SetStandard(WIFI_STANDARD_80211b);
240
241 /** Wifi PHY **/
242 /***************************************************************************/
243 YansWifiPhyHelper wifiPhy;
244
245 /** wifi channel **/
246 YansWifiChannelHelper wifiChannel;
247 wifiChannel.SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel");
248 wifiChannel.AddPropagationLoss("ns3::FriisPropagationLossModel");
249
250 // create wifi channel
251 Ptr<YansWifiChannel> wifiChannelPtr = wifiChannel.Create();
252 wifiPhy.SetChannel(wifiChannelPtr);
253
254 /** MAC layer **/
255 // Add a MAC and disable rate control
256 WifiMacHelper wifiMac;
257 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
258 "DataMode",
259 StringValue(phyMode),
260 "ControlMode",
261 StringValue(phyMode));
262 // Set it to ad-hoc mode
263 wifiMac.SetType("ns3::AdhocWifiMac");
264
265 /** install PHY + MAC **/
266 NetDeviceContainer devices = wifi.Install(wifiPhy, wifiMac, networkNodes);
267
268 /** mobility **/
270 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
271 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
272 positionAlloc->Add(Vector(2 * distanceToRx, 0.0, 0.0));
273 mobility.SetPositionAllocator(positionAlloc);
274 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
275 mobility.Install(c);
276
277 /** Energy Model **/
278 /***************************************************************************/
279 /* energy source */
280 BasicEnergySourceHelper basicSourceHelper;
281 // configure energy source
282 basicSourceHelper.Set("BasicEnergySourceInitialEnergyJ", DoubleValue(1.0));
283 // install source
284 EnergySourceContainer sources = basicSourceHelper.Install(c);
285 /* device energy model */
286 WifiRadioEnergyModelHelper radioEnergyHelper;
287 // configure radio energy model
288 radioEnergyHelper.Set("TxCurrentA", DoubleValue(0.0174));
289 radioEnergyHelper.Set("RxCurrentA", DoubleValue(0.0197));
290 // install device model
291 DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install(devices, sources);
292
293 /* energy harvester */
294 BasicEnergyHarvesterHelper basicHarvesterHelper;
295 // configure energy harvester
296 basicHarvesterHelper.Set("PeriodicHarvestedPowerUpdateInterval",
297 TimeValue(Seconds(harvestingUpdateInterval)));
298 basicHarvesterHelper.Set("HarvestablePower",
299 StringValue("ns3::UniformRandomVariable[Min=0.0|Max=0.1]"));
300 // install harvester on all energy sources
301 EnergyHarvesterContainer harvesters = basicHarvesterHelper.Install(sources);
302 /***************************************************************************/
303
304 /** Internet stack **/
306 internet.Install(networkNodes);
307
309 NS_LOG_INFO("Assign IP Addresses.");
310 ipv4.SetBase("10.1.1.0", "255.255.255.0");
311 Ipv4InterfaceContainer i = ipv4.Assign(devices);
312
313 TypeId tid = TypeId::LookupByName("ns3::UdpSocketFactory");
314 Ptr<Socket> recvSink = Socket::CreateSocket(networkNodes.Get(1), tid); // node 1, Destination
316 recvSink->Bind(local);
317 recvSink->SetRecvCallback(MakeCallback(&ReceivePacket));
318
319 Ptr<Socket> source = Socket::CreateSocket(networkNodes.Get(0), tid); // node 0, Source
321 source->SetAllowBroadcast(true);
322 source->Connect(remote);
323
324 /** connect trace sources **/
325 /***************************************************************************/
326 // all traces are connected to node 1 (Destination)
327 // energy source
328 Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource>(sources.Get(1));
329 basicSourcePtr->TraceConnectWithoutContext("RemainingEnergy", MakeCallback(&RemainingEnergy));
330 // device energy model
331 Ptr<DeviceEnergyModel> basicRadioModelPtr =
332 basicSourcePtr->FindDeviceEnergyModels("ns3::WifiRadioEnergyModel").Get(0);
333 NS_ASSERT(basicRadioModelPtr);
334 basicRadioModelPtr->TraceConnectWithoutContext("TotalEnergyConsumption",
336 // energy harvester
337 Ptr<BasicEnergyHarvester> basicHarvesterPtr =
338 DynamicCast<BasicEnergyHarvester>(harvesters.Get(1));
339 basicHarvesterPtr->TraceConnectWithoutContext("HarvestedPower", MakeCallback(&HarvestedPower));
340 basicHarvesterPtr->TraceConnectWithoutContext("TotalEnergyHarvested",
342 /***************************************************************************/
343
344 /** simulation setup **/
345 // start traffic
346 Simulator::Schedule(Seconds(startTime),
348 source,
349 PacketSize,
350 networkNodes.Get(0),
351 numPackets,
352 interPacketInterval);
353
356
357 for (auto iter = deviceModels.Begin(); iter != deviceModels.End(); iter++)
358 {
359 double energyConsumed = (*iter)->GetTotalEnergyConsumption();
360 NS_LOG_UNCOND("End of simulation ("
361 << Simulator::Now().GetSeconds()
362 << "s) Total energy consumed by radio = " << energyConsumed << "J");
363 NS_ASSERT(energyConsumed <= 1.0);
364 }
365
367
368 return 0;
369}
a polymophic address class
Definition: address.h:101
Creates a BasicEnergyHarvester object.
void Set(std::string name, const AttributeValue &v) override
Creates a BasicEnergySource object.
void Set(std::string name, const AttributeValue &v) override
Parse command-line arguments.
Definition: command-line.h:232
energy::DeviceEnergyModelContainer Install(Ptr< NetDevice > device, Ptr< energy::EnergySource > source) const
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
energy::EnergyHarvesterContainer Install(Ptr< energy::EnergySource > source) const
energy::EnergySourceContainer Install(Ptr< Node > node) const
an Inet address class
Ipv4Address GetIpv4() const
static InetSocketAddress ConvertFrom(const Address &address)
Returns an InetSocketAddress which corresponds to the input Address.
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetBroadcast()
static Ipv4Address GetAny()
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
static Ptr< Socket > CreateSocket(Ptr< Node > node, TypeId tid)
This method wraps the creation of sockets that is performed on a given node by a SocketFactory specif...
Definition: socket.cc:72
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
double GetSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:403
a unique identifier for an interface.
Definition: type-id.h:59
static TypeId LookupByName(std::string name)
Get a TypeId by name.
Definition: type-id.cc:836
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
static void EnableLogComponents(LogLevel logLevel=LOG_LEVEL_ALL)
Helper to enable all WifiNetDevice log components with one statement.
Definition: wifi-helper.cc:880
create MAC layers for a ns3::WifiNetDevice.
void SetType(std::string type, Args &&... args)
Assign WifiRadioEnergyModel to wifi devices.
void Set(std::string name, const AttributeValue &v) override
manage and create wifi channel objects for the YANS model.
void SetPropagationDelay(std::string name, Ts &&... args)
void AddPropagationLoss(std::string name, Ts &&... args)
Ptr< YansWifiChannel > Create() const
Make it easy to create and manage PHY objects for the YANS model.
void SetChannel(Ptr< YansWifiChannel > channel)
Holds a vector of ns3::DeviceEnergyModel pointers.
Iterator End() const
Get an iterator which refers to the last DeviceEnergyModel pointer in the container.
Iterator Begin() const
Get an iterator which refers to the first DeviceEnergyModel pointer in the container.
Holds a vector of ns3::EnergyHarvester pointers.
Ptr< EnergyHarvester > Get(uint32_t i) const
Get the i-th Ptr<EnergyHarvester> stored in this container.
Holds a vector of ns3::EnergySource pointers.
Ptr< EnergySource > Get(uint32_t i) const
Get the i-th Ptr<EnergySource> stored in this container.
void HarvestedPower(double oldValue, double harvestedPower)
Trace function for the power harvested by the energy harvester.
void TotalEnergy(double oldValue, double totalEnergy)
Trace function for total energy consumption at node.
void ReceivePacket(Ptr< Socket > socket)
void TotalEnergyHarvested(double oldValue, double totalEnergyHarvested)
Trace function for the total energy harvested by the node.
void RemainingEnergy(double oldValue, double remainingEnergy)
Trace function for remaining energy at node.
static void GenerateTraffic(Ptr< Socket > socket, uint32_t pktSize, Ptr< Node > n, uint32_t pktCount, Time pktInterval)
static std::string PrintReceivedPacket(Address &from)
Print a received packet.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:894
#define NS_LOG_UNCOND(msg)
Output the requested message unconditionally.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1319
@ WIFI_STANDARD_80211b
ns devices
Definition: first.py:42
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Args... > MakeCallback(R(T::*memPtr)(Args...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:700
ns cmd
Definition: second.py:40
ns wifi
Definition: third.py:95
ns mobility
Definition: third.py:103
bool verbose
uint32_t pktSize
packet size used for the simulation (in bytes)