A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
fdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * SPDX-License-Identifier: GPL-2.0-only
5 *
6 * Author: Marco Miozzo <marco.miozzo@cttc.es>
7 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
8 */
9
11
12#include "lte-amc.h"
14
15#include <ns3/boolean.h>
16#include <ns3/log.h>
17#include <ns3/math.h>
18#include <ns3/pointer.h>
19#include <ns3/simulator.h>
20
21#include <cfloat>
22#include <set>
23
24namespace ns3
25{
26
27NS_LOG_COMPONENT_DEFINE("FdBetFfMacScheduler");
28
29/// FdBetType0AllocationRbg array
30static const int FdBetType0AllocationRbg[4] = {
31 10, // RBG size 1
32 26, // RBG size 2
33 63, // RBG size 3
34 110, // RBG size 4
35}; // see table 7.1.6.1-1 of 36.213
36
37NS_OBJECT_ENSURE_REGISTERED(FdBetFfMacScheduler);
38
40 : m_cschedSapUser(nullptr),
41 m_schedSapUser(nullptr),
42 m_timeWindow(99.0),
43 m_nextRntiUl(0)
44{
48}
49
54
55void
69
72{
73 static TypeId tid =
74 TypeId("ns3::FdBetFfMacScheduler")
76 .SetGroupName("Lte")
77 .AddConstructor<FdBetFfMacScheduler>()
78 .AddAttribute("CqiTimerThreshold",
79 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
80 UintegerValue(1000),
83 .AddAttribute("HarqEnabled",
84 "Activate/Deactivate the HARQ [by default is active].",
85 BooleanValue(true),
88 .AddAttribute("UlGrantMcs",
89 "The MCS of the UL grant, must be [0..15] (default 0)",
93 return tid;
94}
95
96void
101
102void
107
113
119
120void
125
131
132void
144
145void
148{
149 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
150 << (uint16_t)params.m_transmissionMode);
151 auto it = m_uesTxMode.find(params.m_rnti);
152 if (it == m_uesTxMode.end())
153 {
154 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
155 // generate HARQ buffers
156 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
157 DlHarqProcessesStatus_t dlHarqPrcStatus;
158 dlHarqPrcStatus.resize(8, 0);
159 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
160 DlHarqProcessesTimer_t dlHarqProcessesTimer;
161 dlHarqProcessesTimer.resize(8, 0);
162 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
164 dlHarqdci.resize(8);
165 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
166 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
167 dlHarqRlcPdu.resize(2);
168 dlHarqRlcPdu.at(0).resize(8);
169 dlHarqRlcPdu.at(1).resize(8);
170 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
171 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
172 UlHarqProcessesStatus_t ulHarqPrcStatus;
173 ulHarqPrcStatus.resize(8, 0);
174 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
176 ulHarqdci.resize(8);
177 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
178 }
179 else
180 {
181 (*it).second = params.m_transmissionMode;
182 }
183}
184
185void
188{
189 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
190
191 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
192 {
193 auto it = m_flowStatsDl.find(params.m_rnti);
194
195 if (it == m_flowStatsDl.end())
196 {
197 fdbetsFlowPerf_t flowStatsDl;
198 flowStatsDl.flowStart = Simulator::Now();
199 flowStatsDl.totalBytesTransmitted = 0;
200 flowStatsDl.lastTtiBytesTransmitted = 0;
201 flowStatsDl.lastAveragedThroughput = 1;
202 m_flowStatsDl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsDl));
203 fdbetsFlowPerf_t flowStatsUl;
204 flowStatsUl.flowStart = Simulator::Now();
205 flowStatsUl.totalBytesTransmitted = 0;
206 flowStatsUl.lastTtiBytesTransmitted = 0;
207 flowStatsUl.lastAveragedThroughput = 1;
208 m_flowStatsUl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsUl));
209 }
210 }
211}
212
213void
216{
217 NS_LOG_FUNCTION(this);
218 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
219 {
220 auto it = m_rlcBufferReq.begin();
221 while (it != m_rlcBufferReq.end())
222 {
223 if (((*it).first.m_rnti == params.m_rnti) &&
224 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
225 {
226 auto temp = it;
227 it++;
228 m_rlcBufferReq.erase(temp);
229 }
230 else
231 {
232 it++;
233 }
234 }
235 }
236}
237
238void
241{
242 NS_LOG_FUNCTION(this);
243
244 m_uesTxMode.erase(params.m_rnti);
245 m_dlHarqCurrentProcessId.erase(params.m_rnti);
246 m_dlHarqProcessesStatus.erase(params.m_rnti);
247 m_dlHarqProcessesTimer.erase(params.m_rnti);
248 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
249 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
250 m_ulHarqCurrentProcessId.erase(params.m_rnti);
251 m_ulHarqProcessesStatus.erase(params.m_rnti);
252 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
253 m_flowStatsDl.erase(params.m_rnti);
254 m_flowStatsUl.erase(params.m_rnti);
255 m_ceBsrRxed.erase(params.m_rnti);
256 auto it = m_rlcBufferReq.begin();
257 while (it != m_rlcBufferReq.end())
258 {
259 if ((*it).first.m_rnti == params.m_rnti)
260 {
261 auto temp = it;
262 it++;
263 m_rlcBufferReq.erase(temp);
264 }
265 else
266 {
267 it++;
268 }
269 }
270 if (m_nextRntiUl == params.m_rnti)
271 {
272 m_nextRntiUl = 0;
273 }
274}
275
276void
279{
280 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
281 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
282
283 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
284
285 auto it = m_rlcBufferReq.find(flow);
286
287 if (it == m_rlcBufferReq.end())
288 {
289 m_rlcBufferReq[flow] = params;
290 }
291 else
292 {
293 (*it).second = params;
294 }
295}
296
297void
304
305void
312
313int
315{
316 for (int i = 0; i < 4; i++)
317 {
318 if (dlbandwidth < FdBetType0AllocationRbg[i])
319 {
320 return i + 1;
321 }
322 }
323
324 return -1;
325}
326
327unsigned int
329{
330 unsigned int lcActive = 0;
331 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
332 {
333 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
334 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
335 ((*it).second.m_rlcStatusPduSize > 0)))
336 {
337 lcActive++;
338 }
339 if ((*it).first.m_rnti > rnti)
340 {
341 break;
342 }
343 }
344 return lcActive;
345}
346
347bool
349{
350 NS_LOG_FUNCTION(this << rnti);
351
352 auto it = m_dlHarqCurrentProcessId.find(rnti);
353 if (it == m_dlHarqCurrentProcessId.end())
354 {
355 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
356 }
357 auto itStat = m_dlHarqProcessesStatus.find(rnti);
358 if (itStat == m_dlHarqProcessesStatus.end())
359 {
360 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
361 }
362 uint8_t i = (*it).second;
363 do
364 {
365 i = (i + 1) % HARQ_PROC_NUM;
366 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
367
368 return (*itStat).second.at(i) == 0;
369}
370
371uint8_t
373{
374 NS_LOG_FUNCTION(this << rnti);
375
376 if (!m_harqOn)
377 {
378 return 0;
379 }
380
381 auto it = m_dlHarqCurrentProcessId.find(rnti);
382 if (it == m_dlHarqCurrentProcessId.end())
383 {
384 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
385 }
386 auto itStat = m_dlHarqProcessesStatus.find(rnti);
387 if (itStat == m_dlHarqProcessesStatus.end())
388 {
389 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
390 }
391 uint8_t i = (*it).second;
392 do
393 {
394 i = (i + 1) % HARQ_PROC_NUM;
395 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
396 if ((*itStat).second.at(i) == 0)
397 {
398 (*it).second = i;
399 (*itStat).second.at(i) = 1;
400 }
401 else
402 {
403 NS_FATAL_ERROR("No HARQ process available for RNTI "
404 << rnti << " check before update with HarqProcessAvailability");
405 }
406
407 return (*it).second;
408}
409
410void
412{
413 NS_LOG_FUNCTION(this);
414
415 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
416 itTimers++)
417 {
418 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
419 {
420 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
421 {
422 // reset HARQ process
423
424 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
425 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
426 if (itStat == m_dlHarqProcessesStatus.end())
427 {
428 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
429 << (*itTimers).first);
430 }
431 (*itStat).second.at(i) = 0;
432 (*itTimers).second.at(i) = 0;
433 }
434 else
435 {
436 (*itTimers).second.at(i)++;
437 }
438 }
439 }
440}
441
442void
445{
446 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
447 << (0xF & params.m_sfnSf));
448 // API generated by RLC for triggering the scheduling of a DL subframe
449
450 // evaluate the relative channel quality indicator for each UE per each RBG
451 // (since we are using allocation type 0 the small unit of allocation is RBG)
452 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
453
455
457 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
458 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
459 std::vector<bool> rbgMap; // global RBGs map
460 uint16_t rbgAllocatedNum = 0;
461 std::set<uint16_t> rntiAllocated;
462 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
464
465 // update UL HARQ proc id
466 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
467 itProcId != m_ulHarqCurrentProcessId.end();
468 itProcId++)
469 {
470 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
471 }
472
473 // RACH Allocation
475 uint16_t rbStart = 0;
476 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
477 {
479 (*itRach).m_estimatedSize,
480 " Default UL Grant MCS does not allow to send RACH messages");
482 newRar.m_rnti = (*itRach).m_rnti;
483 // DL-RACH Allocation
484 // Ideal: no needs of configuring m_dci
485 // UL-RACH Allocation
486 newRar.m_grant.m_rnti = newRar.m_rnti;
487 newRar.m_grant.m_mcs = m_ulGrantMcs;
488 uint16_t rbLen = 1;
489 uint16_t tbSizeBits = 0;
490 // find lowest TB size that fits UL grant estimated size
491 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
492 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
493 {
494 rbLen++;
495 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
496 }
497 if (tbSizeBits < (*itRach).m_estimatedSize)
498 {
499 // no more allocation space: finish allocation
500 break;
501 }
502 newRar.m_grant.m_rbStart = rbStart;
503 newRar.m_grant.m_rbLen = rbLen;
504 newRar.m_grant.m_tbSize = tbSizeBits / 8;
505 newRar.m_grant.m_hopping = false;
506 newRar.m_grant.m_tpc = 0;
507 newRar.m_grant.m_cqiRequest = false;
508 newRar.m_grant.m_ulDelay = false;
509 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
510 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
511 << newRar.m_grant.m_tbSize);
512 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
513 {
514 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
515 }
516
517 if (m_harqOn)
518 {
519 // generate UL-DCI for HARQ retransmissions
520 UlDciListElement_s uldci;
521 uldci.m_rnti = newRar.m_rnti;
522 uldci.m_rbLen = rbLen;
523 uldci.m_rbStart = rbStart;
524 uldci.m_mcs = m_ulGrantMcs;
525 uldci.m_tbSize = tbSizeBits / 8;
526 uldci.m_ndi = 1;
527 uldci.m_cceIndex = 0;
528 uldci.m_aggrLevel = 1;
529 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
530 uldci.m_hopping = false;
531 uldci.m_n2Dmrs = 0;
532 uldci.m_tpc = 0; // no power control
533 uldci.m_cqiRequest = false; // only period CQI at this stage
534 uldci.m_ulIndex = 0; // TDD parameter
535 uldci.m_dai = 1; // TDD parameter
536 uldci.m_freqHopping = 0;
537 uldci.m_pdcchPowerOffset = 0; // not used
538
539 uint8_t harqId = 0;
540 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
541 if (itProcId == m_ulHarqCurrentProcessId.end())
542 {
543 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
544 }
545 harqId = (*itProcId).second;
546 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
547 if (itDci == m_ulHarqProcessesDciBuffer.end())
548 {
549 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
550 << uldci.m_rnti);
551 }
552 (*itDci).second.at(harqId) = uldci;
553 }
554
555 rbStart = rbStart + rbLen;
556 ret.m_buildRarList.push_back(newRar);
557 }
558 m_rachList.clear();
559
560 // Process DL HARQ feedback
562 // retrieve past HARQ retx buffered
563 if (!m_dlInfoListBuffered.empty())
564 {
565 if (!params.m_dlInfoList.empty())
566 {
567 NS_LOG_INFO(this << " Received DL-HARQ feedback");
569 params.m_dlInfoList.begin(),
570 params.m_dlInfoList.end());
571 }
572 }
573 else
574 {
575 if (!params.m_dlInfoList.empty())
576 {
577 m_dlInfoListBuffered = params.m_dlInfoList;
578 }
579 }
580 if (!m_harqOn)
581 {
582 // Ignore HARQ feedback
583 m_dlInfoListBuffered.clear();
584 }
585 std::vector<DlInfoListElement_s> dlInfoListUntxed;
586 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
587 {
588 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
589 if (itRnti != rntiAllocated.end())
590 {
591 // RNTI already allocated for retx
592 continue;
593 }
594 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
595 std::vector<bool> retx;
596 NS_LOG_INFO(this << " Processing DLHARQ feedback");
597 if (nLayers == 1)
598 {
599 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
601 retx.push_back(false);
602 }
603 else
604 {
605 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
607 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
609 }
610 if (retx.at(0) || retx.at(1))
611 {
612 // retrieve HARQ process information
613 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
614 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
615 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
616 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
617 if (itHarq == m_dlHarqProcessesDciBuffer.end())
618 {
619 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
620 }
621
622 DlDciListElement_s dci = (*itHarq).second.at(harqId);
623 int rv = 0;
624 if (dci.m_rv.size() == 1)
625 {
626 rv = dci.m_rv.at(0);
627 }
628 else
629 {
630 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
631 }
632
633 if (rv == 3)
634 {
635 // maximum number of retx reached -> drop process
636 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
637 auto it = m_dlHarqProcessesStatus.find(rnti);
638 if (it == m_dlHarqProcessesStatus.end())
639 {
640 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
641 << m_dlInfoListBuffered.at(i).m_rnti);
642 }
643 (*it).second.at(harqId) = 0;
644 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
645 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
646 {
647 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
648 << m_dlInfoListBuffered.at(i).m_rnti);
649 }
650 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
651 {
652 (*itRlcPdu).second.at(k).at(harqId).clear();
653 }
654 continue;
655 }
656 // check the feasibility of retransmitting on the same RBGs
657 // translate the DCI to Spectrum framework
658 std::vector<int> dciRbg;
659 uint32_t mask = 0x1;
660 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
661 for (int j = 0; j < 32; j++)
662 {
663 if (((dci.m_rbBitmap & mask) >> j) == 1)
664 {
665 dciRbg.push_back(j);
666 NS_LOG_INFO("\t" << j);
667 }
668 mask = (mask << 1);
669 }
670 bool free = true;
671 for (std::size_t j = 0; j < dciRbg.size(); j++)
672 {
673 if (rbgMap.at(dciRbg.at(j)))
674 {
675 free = false;
676 break;
677 }
678 }
679 if (free)
680 {
681 // use the same RBGs for the retx
682 // reserve RBGs
683 for (std::size_t j = 0; j < dciRbg.size(); j++)
684 {
685 rbgMap.at(dciRbg.at(j)) = true;
686 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
687 rbgAllocatedNum++;
688 }
689
690 NS_LOG_INFO(this << " Send retx in the same RBGs");
691 }
692 else
693 {
694 // find RBGs for sending HARQ retx
695 uint8_t j = 0;
696 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
697 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
698 std::vector<bool> rbgMapCopy = rbgMap;
699 while ((j < dciRbg.size()) && (startRbg != rbgId))
700 {
701 if (!rbgMapCopy.at(rbgId))
702 {
703 rbgMapCopy.at(rbgId) = true;
704 dciRbg.at(j) = rbgId;
705 j++;
706 }
707 rbgId = (rbgId + 1) % rbgNum;
708 }
709 if (j == dciRbg.size())
710 {
711 // find new RBGs -> update DCI map
712 uint32_t rbgMask = 0;
713 for (std::size_t k = 0; k < dciRbg.size(); k++)
714 {
715 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
716 rbgAllocatedNum++;
717 }
718 dci.m_rbBitmap = rbgMask;
719 rbgMap = rbgMapCopy;
720 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
721 }
722 else
723 {
724 // HARQ retx cannot be performed on this TTI -> store it
725 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
726 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
727 }
728 }
729 // retrieve RLC PDU list for retx TBsize and update DCI
731 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
732 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
733 {
734 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
735 }
736 for (std::size_t j = 0; j < nLayers; j++)
737 {
738 if (retx.at(j))
739 {
740 if (j >= dci.m_ndi.size())
741 {
742 // for avoiding errors in MIMO transient phases
743 dci.m_ndi.push_back(0);
744 dci.m_rv.push_back(0);
745 dci.m_mcs.push_back(0);
746 dci.m_tbsSize.push_back(0);
747 NS_LOG_INFO(this << " layer " << (uint16_t)j
748 << " no txed (MIMO transition)");
749 }
750 else
751 {
752 dci.m_ndi.at(j) = 0;
753 dci.m_rv.at(j)++;
754 (*itHarq).second.at(harqId).m_rv.at(j)++;
755 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
756 << (uint16_t)dci.m_rv.at(j));
757 }
758 }
759 else
760 {
761 // empty TB of layer j
762 dci.m_ndi.at(j) = 0;
763 dci.m_rv.at(j) = 0;
764 dci.m_mcs.at(j) = 0;
765 dci.m_tbsSize.at(j) = 0;
766 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
767 }
768 }
769 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
770 {
771 std::vector<RlcPduListElement_s> rlcPduListPerLc;
772 for (std::size_t j = 0; j < nLayers; j++)
773 {
774 if (retx.at(j))
775 {
776 if (j < dci.m_ndi.size())
777 {
778 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
779 << dci.m_tbsSize.at(j));
780 rlcPduListPerLc.push_back(
781 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
782 }
783 }
784 else
785 { // if no retx needed on layer j, push an RlcPduListElement_s object with
786 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
787 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
788 RlcPduListElement_s emptyElement;
789 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
790 .second.at(j)
791 .at(dci.m_harqProcess)
792 .at(k)
793 .m_logicalChannelIdentity;
794 emptyElement.m_size = 0;
795 rlcPduListPerLc.push_back(emptyElement);
796 }
797 }
798
799 if (!rlcPduListPerLc.empty())
800 {
801 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
802 }
803 }
804 newEl.m_rnti = rnti;
805 newEl.m_dci = dci;
806 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
807 // refresh timer
808 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
809 if (itHarqTimer == m_dlHarqProcessesTimer.end())
810 {
811 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
812 }
813 (*itHarqTimer).second.at(harqId) = 0;
814 ret.m_buildDataList.push_back(newEl);
815 rntiAllocated.insert(rnti);
816 }
817 else
818 {
819 // update HARQ process status
820 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
821 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
822 if (it == m_dlHarqProcessesStatus.end())
823 {
824 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
825 << m_dlInfoListBuffered.at(i).m_rnti);
826 }
827 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
828 auto itRlcPdu =
830 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
831 {
832 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
833 << m_dlInfoListBuffered.at(i).m_rnti);
834 }
835 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
836 {
837 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
838 }
839 }
840 }
841 m_dlInfoListBuffered.clear();
842 m_dlInfoListBuffered = dlInfoListUntxed;
843
844 if (rbgAllocatedNum == rbgNum)
845 {
846 // all the RBGs are already allocated -> exit
847 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
848 {
850 }
851 return;
852 }
853
854 std::map<uint16_t, double> estAveThr; // store expected average throughput for UE
855 auto itMax = estAveThr.end();
856 std::map<uint16_t, int> rbgPerRntiLog; // record the number of RBG assigned to UE
857 double metricMax = 0.0;
858 for (auto itFlow = m_flowStatsDl.begin(); itFlow != m_flowStatsDl.end(); itFlow++)
859 {
860 auto itRnti = rntiAllocated.find((*itFlow).first);
861 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*itFlow).first)))
862 {
863 // UE already allocated for HARQ or without HARQ process available -> drop it
864 if (itRnti != rntiAllocated.end())
865 {
866 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*itFlow).first);
867 }
868 if (!HarqProcessAvailability((*itFlow).first))
869 {
870 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*itFlow).first);
871 }
872 continue;
873 }
874
875 // check first what are channel conditions for this UE, if CQI!=0
876 auto itCqi = m_p10CqiRxed.find((*itFlow).first);
877 auto itTxMode = m_uesTxMode.find((*itFlow).first);
878 if (itTxMode == m_uesTxMode.end())
879 {
880 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itFlow).first);
881 }
882 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
883
884 uint8_t cqiSum = 0;
885 for (uint8_t j = 0; j < nLayer; j++)
886 {
887 if (itCqi == m_p10CqiRxed.end())
888 {
889 cqiSum += 1; // no info on this user -> lowest MCS
890 }
891 else
892 {
893 cqiSum = (*itCqi).second;
894 }
895 }
896 if (cqiSum != 0)
897 {
898 estAveThr.insert(std::pair<uint16_t, double>((*itFlow).first,
899 (*itFlow).second.lastAveragedThroughput));
900 }
901 else
902 {
903 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*itFlow).first);
904 }
905 }
906
907 if (!estAveThr.empty())
908 {
909 // Find UE with largest priority metric
910 for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
911 {
912 double metric = 1 / (*it).second;
913 if (metric > metricMax)
914 {
915 metricMax = metric;
916 itMax = it;
917 }
918 rbgPerRntiLog.insert(std::pair<uint16_t, int>((*it).first, 1));
919 }
920
921 // The scheduler tries the best to achieve the equal throughput among all UEs
922 int i = 0;
923 do
924 {
925 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
926 if (!rbgMap.at(i))
927 {
928 // allocate one RBG to current UE
929 std::vector<uint16_t> tempMap;
930 auto itMap = allocationMap.find((*itMax).first);
931 if (itMap == allocationMap.end())
932 {
933 tempMap.push_back(i);
934 allocationMap[(*itMax).first] = tempMap;
935 }
936 else
937 {
938 (*itMap).second.push_back(i);
939 }
940
941 // calculate expected throughput for current UE
942 auto itCqi = m_p10CqiRxed.find((*itMax).first);
943 auto itTxMode = m_uesTxMode.find((*itMax).first);
944 if (itTxMode == m_uesTxMode.end())
945 {
946 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMax).first);
947 }
948 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
949 std::vector<uint8_t> mcs;
950 for (uint8_t j = 0; j < nLayer; j++)
951 {
952 if (itCqi == m_p10CqiRxed.end())
953 {
954 mcs.push_back(0); // no info on this user -> lowest MCS
955 }
956 else
957 {
958 mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
959 }
960 }
961
962 auto itRbgPerRntiLog = rbgPerRntiLog.find((*itMax).first);
963 auto itPastAveThr = m_flowStatsDl.find((*itMax).first);
964 uint32_t bytesTxed = 0;
965 for (uint8_t j = 0; j < nLayer; j++)
966 {
967 int tbSize =
968 (m_amc->GetDlTbSizeFromMcs(mcs.at(0), (*itRbgPerRntiLog).second * rbgSize) /
969 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
970 bytesTxed += tbSize;
971 }
972 double expectedAveThr =
973 ((1.0 - (1.0 / m_timeWindow)) * (*itPastAveThr).second.lastAveragedThroughput) +
974 ((1.0 / m_timeWindow) * (double)(bytesTxed / 0.001));
975
976 int rbgPerRnti = (*itRbgPerRntiLog).second;
977 rbgPerRnti++;
978 rbgPerRntiLog[(*itMax).first] = rbgPerRnti;
979 estAveThr[(*itMax).first] = expectedAveThr;
980
981 // find new UE with largest priority metric
982 metricMax = 0.0;
983 for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
984 {
985 double metric = 1 / (*it).second;
986 if (metric > metricMax)
987 {
988 itMax = it;
989 metricMax = metric;
990 }
991 } // end for estAveThr
992
993 rbgMap.at(i) = true;
994
995 } // end for free RBGs
996
997 i++;
998
999 } while (i < rbgNum); // end for RBGs
1000
1001 } // end if estAveThr
1002
1003 // reset TTI stats of users
1004 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1005 {
1006 (*itStats).second.lastTtiBytesTransmitted = 0;
1007 }
1008
1009 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1010 // creating the correspondent DCIs
1011 auto itMap = allocationMap.begin();
1012 while (itMap != allocationMap.end())
1013 {
1014 // create new BuildDataListElement_s for this LC
1016 newEl.m_rnti = (*itMap).first;
1017 // create the DlDciListElement_s
1018 DlDciListElement_s newDci;
1019 newDci.m_rnti = (*itMap).first;
1020 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1021
1022 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1023 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1024 if (lcActives == 0)
1025 {
1026 // Set to max value, to avoid divide by 0 below
1027 lcActives = (uint16_t)65535; // UINT16_MAX;
1028 }
1029 uint16_t RbgPerRnti = (*itMap).second.size();
1030 auto itCqi = m_p10CqiRxed.find((*itMap).first);
1031 auto itTxMode = m_uesTxMode.find((*itMap).first);
1032 if (itTxMode == m_uesTxMode.end())
1033 {
1034 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1035 }
1036 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1037
1038 uint32_t bytesTxed = 0;
1039 for (uint8_t j = 0; j < nLayer; j++)
1040 {
1041 if (itCqi == m_p10CqiRxed.end())
1042 {
1043 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1044 }
1045 else
1046 {
1047 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1048 }
1049
1050 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RbgPerRnti * rbgSize) /
1051 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1052 newDci.m_tbsSize.push_back(tbSize);
1053 bytesTxed += tbSize;
1054 }
1055
1056 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1057 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1058 uint32_t rbgMask = 0;
1059 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1060 {
1061 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1062 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1063 }
1064 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1065
1066 // create the rlc PDUs -> equally divide resources among actives LCs
1067 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1068 {
1069 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1070 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1071 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1072 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1073 {
1074 std::vector<RlcPduListElement_s> newRlcPduLe;
1075 for (uint8_t j = 0; j < nLayer; j++)
1076 {
1077 RlcPduListElement_s newRlcEl;
1078 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1079 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1080 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1081 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1082 newRlcPduLe.push_back(newRlcEl);
1084 newRlcEl.m_logicalChannelIdentity,
1085 newRlcEl.m_size);
1086 if (m_harqOn)
1087 {
1088 // store RLC PDU list for HARQ
1089 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1090 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1091 {
1092 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1093 << (*itMap).first);
1094 }
1095 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1096 }
1097 }
1098 newEl.m_rlcPduList.push_back(newRlcPduLe);
1099 }
1100 if ((*itBufReq).first.m_rnti > (*itMap).first)
1101 {
1102 break;
1103 }
1104 }
1105 for (uint8_t j = 0; j < nLayer; j++)
1106 {
1107 newDci.m_ndi.push_back(1);
1108 newDci.m_rv.push_back(0);
1109 }
1110
1111 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1112
1113 newEl.m_dci = newDci;
1114
1115 if (m_harqOn)
1116 {
1117 // store DCI for HARQ
1118 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1119 if (itDci == m_dlHarqProcessesDciBuffer.end())
1120 {
1121 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1122 << newEl.m_rnti);
1123 }
1124 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1125 // refresh timer
1126 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1127 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1128 {
1129 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1130 }
1131 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1132 }
1133
1134 // ...more parameters -> ignored in this version
1135
1136 ret.m_buildDataList.push_back(newEl);
1137 // update UE stats
1138 auto it = m_flowStatsDl.find((*itMap).first);
1139 if (it != m_flowStatsDl.end())
1140 {
1141 (*it).second.lastTtiBytesTransmitted = bytesTxed;
1142 NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTransmitted);
1143 }
1144 else
1145 {
1146 NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1147 }
1148
1149 itMap++;
1150 } // end while allocation
1151 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1152
1153 // update UEs stats
1154 NS_LOG_INFO(this << " Update UEs statistics");
1155 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1156 {
1157 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1158 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1159 // Evolution, Ed Wiley)
1160 (*itStats).second.lastAveragedThroughput =
1161 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1162 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1163 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1164 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1165 (*itStats).second.lastTtiBytesTransmitted = 0;
1166 }
1167
1169}
1170
1171void
1179
1180void
1183{
1184 NS_LOG_FUNCTION(this);
1185
1186 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1187 {
1188 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1189 {
1190 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1191 << " reported");
1192 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1193 auto it = m_p10CqiRxed.find(rnti);
1194 if (it == m_p10CqiRxed.end())
1195 {
1196 // create the new entry
1197 m_p10CqiRxed[rnti] =
1198 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1199 // generate correspondent timer
1200 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1201 }
1202 else
1203 {
1204 // update the CQI value and refresh correspondent timer
1205 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1206 // update correspondent timer
1207 auto itTimers = m_p10CqiTimers.find(rnti);
1208 (*itTimers).second = m_cqiTimersThreshold;
1209 }
1210 }
1211 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1212 {
1213 // subband CQI reporting high layer configured
1214 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1215 auto it = m_a30CqiRxed.find(rnti);
1216 if (it == m_a30CqiRxed.end())
1217 {
1218 // create the new entry
1219 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1220 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1221 }
1222 else
1223 {
1224 // update the CQI value and refresh correspondent timer
1225 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1226 auto itTimers = m_a30CqiTimers.find(rnti);
1227 (*itTimers).second = m_cqiTimersThreshold;
1228 }
1229 }
1230 else
1231 {
1232 NS_LOG_ERROR(this << " CQI type unknown");
1233 }
1234 }
1235}
1236
1237double
1238FdBetFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1239{
1240 auto itCqi = m_ueCqi.find(rnti);
1241 if (itCqi == m_ueCqi.end())
1242 {
1243 // no cqi info about this UE
1244 return NO_SINR;
1245 }
1246 else
1247 {
1248 // take the average SINR value among the available
1249 double sinrSum = 0;
1250 unsigned int sinrNum = 0;
1251 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1252 {
1253 double sinr = (*itCqi).second.at(i);
1254 if (sinr != NO_SINR)
1255 {
1256 sinrSum += sinr;
1257 sinrNum++;
1258 }
1259 }
1260 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1261 // store the value
1262 (*itCqi).second.at(rb) = estimatedSinr;
1263 return estimatedSinr;
1264 }
1265}
1266
1267void
1270{
1271 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1272 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1273
1275
1276 // Generate RBs map
1278 std::vector<bool> rbMap;
1279 std::set<uint16_t> rntiAllocated;
1280 std::vector<uint16_t> rbgAllocationMap;
1281 // update with RACH allocation map
1282 rbgAllocationMap = m_rachAllocationMap;
1283 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1284 m_rachAllocationMap.clear();
1286
1287 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1288 // remove RACH allocation
1289 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1290 {
1291 if (rbgAllocationMap.at(i) != 0)
1292 {
1293 rbMap.at(i) = true;
1294 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1295 }
1296 }
1297
1298 if (m_harqOn)
1299 {
1300 // Process UL HARQ feedback
1301 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1302 {
1303 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1304 {
1305 // retx correspondent block: retrieve the UL-DCI
1306 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1307 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1308 if (itProcId == m_ulHarqCurrentProcessId.end())
1309 {
1310 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1311 }
1312 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1313 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1314 << " i " << i << " size " << params.m_ulInfoList.size());
1315 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1316 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1317 {
1318 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1319 continue;
1320 }
1321 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1322 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1323 if (itStat == m_ulHarqProcessesStatus.end())
1324 {
1325 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1326 }
1327 if ((*itStat).second.at(harqId) >= 3)
1328 {
1329 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1330 continue;
1331 }
1332 bool free = true;
1333 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1334 {
1335 if (rbMap.at(j))
1336 {
1337 free = false;
1338 NS_LOG_INFO(this << " BUSY " << j);
1339 }
1340 }
1341 if (free)
1342 {
1343 // retx on the same RBs
1344 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1345 {
1346 rbMap.at(j) = true;
1347 rbgAllocationMap.at(j) = dci.m_rnti;
1348 NS_LOG_INFO("\tRB " << j);
1349 }
1350 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1351 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1352 << (*itStat).second.at(harqId) + 1);
1353 }
1354 else
1355 {
1356 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1357 continue;
1358 }
1359 dci.m_ndi = 0;
1360 // Update HARQ buffers with new HarqId
1361 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1362 (*itStat).second.at(harqId) = 0;
1363 (*itHarq).second.at((*itProcId).second) = dci;
1364 ret.m_dciList.push_back(dci);
1365 rntiAllocated.insert(dci.m_rnti);
1366 }
1367 else
1368 {
1369 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1370 << params.m_ulInfoList.at(i).m_rnti);
1371 }
1372 }
1373 }
1374
1375 std::map<uint16_t, uint32_t>::iterator it;
1376 int nflows = 0;
1377
1378 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1379 {
1380 auto itRnti = rntiAllocated.find((*it).first);
1381 // select UEs with queues not empty and not yet allocated for HARQ
1382 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1383 {
1384 nflows++;
1385 }
1386 }
1387
1388 if (nflows == 0)
1389 {
1390 if (!ret.m_dciList.empty())
1391 {
1392 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1394 }
1395
1396 return; // no flows to be scheduled
1397 }
1398
1399 // Divide the remaining resources equally among the active users starting from the subsequent
1400 // one served last scheduling trigger
1401 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1402 if (rbPerFlow < 3)
1403 {
1404 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1405 // >= 7 bytes
1406 }
1407 int rbAllocated = 0;
1408
1409 if (m_nextRntiUl != 0)
1410 {
1411 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1412 {
1413 if ((*it).first == m_nextRntiUl)
1414 {
1415 break;
1416 }
1417 }
1418 if (it == m_ceBsrRxed.end())
1419 {
1420 NS_LOG_ERROR(this << " no user found");
1421 }
1422 }
1423 else
1424 {
1425 it = m_ceBsrRxed.begin();
1426 m_nextRntiUl = (*it).first;
1427 }
1428 do
1429 {
1430 auto itRnti = rntiAllocated.find((*it).first);
1431 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1432 {
1433 // UE already allocated for UL-HARQ -> skip it
1434 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1435 << (*it).first);
1436 it++;
1437 if (it == m_ceBsrRxed.end())
1438 {
1439 // restart from the first
1440 it = m_ceBsrRxed.begin();
1441 }
1442 continue;
1443 }
1444 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1445 {
1446 // limit to physical resources last resource assignment
1447 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1448 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1449 if (rbPerFlow < 3)
1450 {
1451 // terminate allocation
1452 rbPerFlow = 0;
1453 }
1454 }
1455
1456 UlDciListElement_s uldci;
1457 uldci.m_rnti = (*it).first;
1458 uldci.m_rbLen = rbPerFlow;
1459 bool allocated = false;
1460 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1461 << " flows " << nflows);
1462 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1463 (rbPerFlow != 0))
1464 {
1465 // check availability
1466 bool free = true;
1467 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1468 {
1469 if (rbMap.at(j))
1470 {
1471 free = false;
1472 break;
1473 }
1474 }
1475 if (free)
1476 {
1477 uldci.m_rbStart = rbAllocated;
1478
1479 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1480 {
1481 rbMap.at(j) = true;
1482 // store info on allocation for managing ul-cqi interpretation
1483 rbgAllocationMap.at(j) = (*it).first;
1484 }
1485 rbAllocated += rbPerFlow;
1486 allocated = true;
1487 break;
1488 }
1489 rbAllocated++;
1490 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1491 {
1492 // limit to physical resources last resource assignment
1493 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1494 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1495 if (rbPerFlow < 3)
1496 {
1497 // terminate allocation
1498 rbPerFlow = 0;
1499 }
1500 }
1501 }
1502 if (!allocated)
1503 {
1504 // unable to allocate new resource: finish scheduling
1505 m_nextRntiUl = (*it).first;
1506 if (!ret.m_dciList.empty())
1507 {
1509 }
1510 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1511 return;
1512 }
1513
1514 auto itCqi = m_ueCqi.find((*it).first);
1515 int cqi = 0;
1516 if (itCqi == m_ueCqi.end())
1517 {
1518 // no cqi info about this UE
1519 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1520 }
1521 else
1522 {
1523 // take the lowest CQI value (worst RB)
1524 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1525 "CQI of RNTI = " << (*it).first << " has expired");
1526 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1527 if (minSinr == NO_SINR)
1528 {
1529 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1530 }
1531 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1532 {
1533 double sinr = (*itCqi).second.at(i);
1534 if (sinr == NO_SINR)
1535 {
1536 sinr = EstimateUlSinr((*it).first, i);
1537 }
1538 if (sinr < minSinr)
1539 {
1540 minSinr = sinr;
1541 }
1542 }
1543
1544 // translate SINR -> cqi: WILD ACK: same as DL
1545 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1546 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1547 if (cqi == 0)
1548 {
1549 it++;
1550 if (it == m_ceBsrRxed.end())
1551 {
1552 // restart from the first
1553 it = m_ceBsrRxed.begin();
1554 }
1555 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1556 // remove UE from allocation map
1557 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1558 {
1559 rbgAllocationMap.at(i) = 0;
1560 }
1561 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1562 }
1563 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1564 }
1565
1566 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1568 uldci.m_ndi = 1;
1569 uldci.m_cceIndex = 0;
1570 uldci.m_aggrLevel = 1;
1571 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1572 uldci.m_hopping = false;
1573 uldci.m_n2Dmrs = 0;
1574 uldci.m_tpc = 0; // no power control
1575 uldci.m_cqiRequest = false; // only period CQI at this stage
1576 uldci.m_ulIndex = 0; // TDD parameter
1577 uldci.m_dai = 1; // TDD parameter
1578 uldci.m_freqHopping = 0;
1579 uldci.m_pdcchPowerOffset = 0; // not used
1580 ret.m_dciList.push_back(uldci);
1581 // store DCI for HARQ_PERIOD
1582 uint8_t harqId = 0;
1583 if (m_harqOn)
1584 {
1585 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1586 if (itProcId == m_ulHarqCurrentProcessId.end())
1587 {
1588 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1589 }
1590 harqId = (*itProcId).second;
1591 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1592 if (itDci == m_ulHarqProcessesDciBuffer.end())
1593 {
1594 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1595 << uldci.m_rnti);
1596 }
1597 (*itDci).second.at(harqId) = uldci;
1598 // Update HARQ process status (RV 0)
1599 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1600 if (itStat == m_ulHarqProcessesStatus.end())
1601 {
1602 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1603 << uldci.m_rnti);
1604 }
1605 (*itStat).second.at(harqId) = 0;
1606 }
1607
1608 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1609 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1610 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1611 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1612 << (uint16_t)harqId);
1613
1614 // update TTI UE stats
1615 auto itStats = m_flowStatsUl.find((*it).first);
1616 if (itStats != m_flowStatsUl.end())
1617 {
1618 (*itStats).second.lastTtiBytesTransmitted = uldci.m_tbSize;
1619 }
1620 else
1621 {
1622 NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1623 }
1624
1625 it++;
1626 if (it == m_ceBsrRxed.end())
1627 {
1628 // restart from the first
1629 it = m_ceBsrRxed.begin();
1630 }
1631 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1632 {
1633 // Stop allocation: no more PRBs
1634 m_nextRntiUl = (*it).first;
1635 break;
1636 }
1637 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1638
1639 // Update global UE stats
1640 // update UEs stats
1641 for (auto itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1642 {
1643 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1644 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1645 // Evolution, Ed Wiley)
1646 (*itStats).second.lastAveragedThroughput =
1647 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1648 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1649 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1650 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1651 (*itStats).second.lastTtiBytesTransmitted = 0;
1652 }
1653 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1655}
1656
1657void
1663
1664void
1670
1671void
1674{
1675 NS_LOG_FUNCTION(this);
1676
1677 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1678 {
1679 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1680 {
1681 // buffer status report
1682 // note that this scheduler does not differentiate the
1683 // allocation according to which LCGs have more/less bytes
1684 // to send.
1685 // Hence the BSR of different LCGs are just summed up to get
1686 // a total queue size that is used for allocation purposes.
1687
1688 uint32_t buffer = 0;
1689 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1690 {
1691 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1692 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1693 }
1694
1695 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1696 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1697 auto it = m_ceBsrRxed.find(rnti);
1698 if (it == m_ceBsrRxed.end())
1699 {
1700 // create the new entry
1701 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1702 }
1703 else
1704 {
1705 // update the buffer size value
1706 (*it).second = buffer;
1707 }
1708 }
1709 }
1710}
1711
1712void
1715{
1716 NS_LOG_FUNCTION(this);
1717 // retrieve the allocation for this subframe
1718 switch (m_ulCqiFilter)
1719 {
1721 // filter all the CQIs that are not SRS based
1722 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1723 {
1724 return;
1725 }
1726 }
1727 break;
1729 // filter all the CQIs that are not SRS based
1730 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1731 {
1732 return;
1733 }
1734 }
1735 break;
1736 default:
1737 NS_FATAL_ERROR("Unknown UL CQI type");
1738 }
1739
1740 switch (params.m_ulCqi.m_type)
1741 {
1742 case UlCqi_s::PUSCH: {
1743 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1744 << " subframe no. " << (0xF & params.m_sfnSf));
1745 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1746 if (itMap == m_allocationMaps.end())
1747 {
1748 return;
1749 }
1750 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1751 {
1752 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1753 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1754 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1755 if (itCqi == m_ueCqi.end())
1756 {
1757 // create a new entry
1758 std::vector<double> newCqi;
1759 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1760 {
1761 if (i == j)
1762 {
1763 newCqi.push_back(sinr);
1764 }
1765 else
1766 {
1767 // initialize with NO_SINR value.
1768 newCqi.push_back(NO_SINR);
1769 }
1770 }
1771 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1772 // generate correspondent timer
1773 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1774 }
1775 else
1776 {
1777 // update the value
1778 (*itCqi).second.at(i) = sinr;
1779 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1780 << sinr);
1781 // update correspondent timer
1782 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1783 (*itTimers).second = m_cqiTimersThreshold;
1784 }
1785 }
1786 // remove obsolete info on allocation
1787 m_allocationMaps.erase(itMap);
1788 }
1789 break;
1790 case UlCqi_s::SRS: {
1791 // get the RNTI from vendor specific parameters
1792 uint16_t rnti = 0;
1793 NS_ASSERT(!params.m_vendorSpecificList.empty());
1794 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1795 {
1796 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1797 {
1798 Ptr<SrsCqiRntiVsp> vsp =
1799 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1800 rnti = vsp->GetRnti();
1801 }
1802 }
1803 auto itCqi = m_ueCqi.find(rnti);
1804 if (itCqi == m_ueCqi.end())
1805 {
1806 // create a new entry
1807 std::vector<double> newCqi;
1808 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1809 {
1810 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1811 newCqi.push_back(sinr);
1812 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1813 << sinr);
1814 }
1815 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1816 // generate correspondent timer
1817 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1818 }
1819 else
1820 {
1821 // update the values
1822 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1823 {
1824 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1825 (*itCqi).second.at(j) = sinr;
1826 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1827 << sinr);
1828 }
1829 // update correspondent timer
1830 auto itTimers = m_ueCqiTimers.find(rnti);
1831 (*itTimers).second = m_cqiTimersThreshold;
1832 }
1833 }
1834 break;
1835 case UlCqi_s::PUCCH_1:
1836 case UlCqi_s::PUCCH_2:
1837 case UlCqi_s::PRACH: {
1838 NS_FATAL_ERROR("FdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1839 }
1840 break;
1841 default:
1842 NS_FATAL_ERROR("Unknown type of UL-CQI");
1843 }
1844}
1845
1846void
1848{
1849 // refresh DL CQI P01 Map
1850 auto itP10 = m_p10CqiTimers.begin();
1851 while (itP10 != m_p10CqiTimers.end())
1852 {
1853 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1854 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1855 if ((*itP10).second == 0)
1856 {
1857 // delete correspondent entries
1858 auto itMap = m_p10CqiRxed.find((*itP10).first);
1859 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1860 " Does not find CQI report for user " << (*itP10).first);
1861 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1862 m_p10CqiRxed.erase(itMap);
1863 auto temp = itP10;
1864 itP10++;
1865 m_p10CqiTimers.erase(temp);
1866 }
1867 else
1868 {
1869 (*itP10).second--;
1870 itP10++;
1871 }
1872 }
1873
1874 // refresh DL CQI A30 Map
1875 auto itA30 = m_a30CqiTimers.begin();
1876 while (itA30 != m_a30CqiTimers.end())
1877 {
1878 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1879 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1880 if ((*itA30).second == 0)
1881 {
1882 // delete correspondent entries
1883 auto itMap = m_a30CqiRxed.find((*itA30).first);
1884 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1885 " Does not find CQI report for user " << (*itA30).first);
1886 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1887 m_a30CqiRxed.erase(itMap);
1888 auto temp = itA30;
1889 itA30++;
1890 m_a30CqiTimers.erase(temp);
1891 }
1892 else
1893 {
1894 (*itA30).second--;
1895 itA30++;
1896 }
1897 }
1898}
1899
1900void
1902{
1903 // refresh UL CQI Map
1904 auto itUl = m_ueCqiTimers.begin();
1905 while (itUl != m_ueCqiTimers.end())
1906 {
1907 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1908 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1909 if ((*itUl).second == 0)
1910 {
1911 // delete correspondent entries
1912 auto itMap = m_ueCqi.find((*itUl).first);
1913 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1914 " Does not find CQI report for user " << (*itUl).first);
1915 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1916 (*itMap).second.clear();
1917 m_ueCqi.erase(itMap);
1918 auto temp = itUl;
1919 itUl++;
1920 m_ueCqiTimers.erase(temp);
1921 }
1922 else
1923 {
1924 (*itUl).second--;
1925 itUl++;
1926 }
1927 }
1928}
1929
1930void
1931FdBetFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1932{
1933 LteFlowId_t flow(rnti, lcid);
1934 auto it = m_rlcBufferReq.find(flow);
1935 if (it != m_rlcBufferReq.end())
1936 {
1937 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1938 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1939 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1940 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1941 // Update queues: RLC tx order Status, ReTx, Tx
1942 // Update status queue
1943 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1944 {
1945 (*it).second.m_rlcStatusPduSize = 0;
1946 }
1947 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1948 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1949 {
1950 (*it).second.m_rlcRetransmissionQueueSize = 0;
1951 }
1952 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1953 {
1954 uint32_t rlcOverhead;
1955 if (lcid == 1)
1956 {
1957 // for SRB1 (using RLC AM) it's better to
1958 // overestimate RLC overhead rather than
1959 // underestimate it and risk unneeded
1960 // segmentation which increases delay
1961 rlcOverhead = 4;
1962 }
1963 else
1964 {
1965 // minimum RLC overhead due to header
1966 rlcOverhead = 2;
1967 }
1968 // update transmission queue
1969 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1970 {
1971 (*it).second.m_rlcTransmissionQueueSize = 0;
1972 }
1973 else
1974 {
1975 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1976 }
1977 }
1978 }
1979 else
1980 {
1981 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1982 }
1983}
1984
1985void
1987{
1988 size = size - 2; // remove the minimum RLC overhead
1989 auto it = m_ceBsrRxed.find(rnti);
1990 if (it != m_ceBsrRxed.end())
1991 {
1992 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1993 if ((*it).second >= size)
1994 {
1995 (*it).second -= size;
1996 }
1997 else
1998 {
1999 (*it).second = 0;
2000 }
2001 }
2002 else
2003 {
2004 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2005 }
2006}
2007
2008void
2010{
2011 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2013 params.m_rnti = rnti;
2014 params.m_transmissionMode = txMode;
2016}
2017
2018} // namespace ns3
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Blind Equal Throughput scheduler.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::vector< RachListElement_s > m_rachList
rach list
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow function.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request function.
void DoDispose() override
Destructor implementation.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
Csched LC config request function.
~FdBetFfMacScheduler() override
Destructor.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
FfMacSchedSapProvider * m_schedSapProvider
sched sap provider
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
LteFfrSapUser * m_ffrSapUser
ffr sap user
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
csched cell config
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
LteFfrSapUser * GetLteFfrSapUser() override
void RefreshUlCqiMaps()
Refresh UL CQI maps.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CGI info request function.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
friend class MemberSchedSapProvider< FdBetFfMacScheduler >
allow MemberSchedSapProvider<FdBetFfMacScheduler> class friend access
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CGI info request function.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI Buffer.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
Csched UE config request function.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacCschedSapUser * m_cschedSapUser
csched sap user
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
ffr sap provider
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
std::vector< uint16_t > m_rachAllocationMap
rach allocation map
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU List.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void RefreshDlCqiMaps()
Refresh DL CQI maps.
FfMacCschedSapProvider * m_cschedSapProvider
csched sap provider
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
DL HARQ retx buffered.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
FfMacSchedSapUser * m_schedSapUser
sched sap user
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
friend class MemberCschedSapProvider< FdBetFfMacScheduler >
allow MemberCschedSapProvider<FdBetFfMacScheduler> class friend access
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition lte-ffr-sap.h:29
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Smart pointer class similar to boost::intrusive_ptr.
static Time Now()
Return the current simulation virtual time.
Definition simulator.cc:197
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
a unique identifier for an interface.
Definition type-id.h:48
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition type-id.cc:1001
Hold an unsigned integer type.
Definition uinteger.h:34
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition assert.h:55
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition assert.h:75
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition abort.h:97
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition log.h:243
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition log.h:191
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition log.h:257
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition log.h:271
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition log.h:264
Ptr< T > CreateObject(Args &&... args)
Create an object by type, with varying number of constructor parameters.
Definition object.h:619
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition object-base.h:35
#define HARQ_PERIOD
Definition lte-common.h:19
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition boolean.cc:113
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
Ptr< const AttributeChecker > MakeUintegerChecker()
Definition uinteger.h:85
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition uinteger.h:35
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Ptr< T1 > DynamicCast(const Ptr< T2 > &p)
Cast a Ptr.
Definition ptr.h:580
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
@ SUCCESS
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition boolean.h:70
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int FdBetType0AllocationRbg[4]
FdBetType0AllocationRbg array.
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
std::vector< uint16_t > m_tbsSize
The TBs size.
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition lte-common.h:32
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
fdbetsFlowPerf_t structure
unsigned int lastTtiBytesTransmitted
last total bytes transmitted
double lastAveragedThroughput
last averaged throughput
unsigned long totalBytesTransmitted
total bytes transmitted
Time flowStart
flow start time